Abstract

VEGF expression by proximal tubular epithelial cells may play a critical role in maintaining peritubular capillary endothelium in renal disease. Two major processes involved in renal injury include hypoxia (from vasoconstriction or vascular injury) and transforming growth factor (TGF)-beta-dependent fibrosis, both of which are known to stimulate VEGF. Because the TGF-beta/Smad pathway is activated in hypoxia, we tested the hypothesis that the induction of VEGF in hypoxia could be partially dependent on TGF-beta. Rat proximal tubular (NRK52E) cells treated with TGF-beta under normoxic conditions secreted VEGF at 24 h, and this was significantly reduced by blocking Smad activation by overexpressing the inhibitory Smad7 or by blocking p38 and ERK1/2 MAP kinase activation or protein kinase C activation with specific inhibitors. With acute hypoxia, rat proximal tubular cells also express VEGF mRNA and protein as well as TGF-beta. However, the induction of VEGF occurs before synthesis of TGF-beta and is not blocked by either a TGF-beta antagonist, by Smad7 overexpression, or by blockage of ERK1/2, whereas induction is blocked by PKC inhibition or partially blocked by a p38 inhibitor. Finally, the addition of TGF-beta with hypoxia results in significantly more VEGF expression than either stimulation alone. Thus TGF-beta and hypoxia act via additive/synergistic but distinct pathways to stimulate VEGF in proximal tubular cells, a finding that may be important in understanding how VEGF is stimulated in renal disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call