Abstract

The generation of activity in the central nervous system requires precise tuning of cellular properties and synaptic transmission. Neural networks in the spinal cord produce coordinated locomotor movements. Synapses in these networks need to be equipped with multiple mechanisms that regulate their operation over varying regimes to produce locomotor activity at different frequencies. Using the in vitro lamprey spinal cord, we explored whether Ca(2+) influx via different routes in postsynaptic soma and dendrites and in presynaptic terminals can activate apamin-sensitive Ca(2+)-activated K(+) (SK) channels and thereby shape synaptic transmission. We show that postsynaptic SK channels are tightly coupled to Ca(2+) influx via NMDA receptors. Activation of these channels by synaptically induced NMDA-dependent Ca(2+) transients restrains the time course of the synaptic current and the amplitude of the synaptic potential. In addition, presynaptic SK channels are activated by Ca(2+) influx via voltage-gated channels and control the waveform of the action potential and the resulting Ca(2+) dynamics in the axon terminals. The coupling of SK channels to different Ca(2+) sources, pre- and postsynaptically, acts as a negative feedback mechanism to shape synaptic transmission. Thus SK channels can play a pivotal role in setting the dynamic range of synapses and enabling short-term plasticity in the spinal locomotor network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call