Abstract
Migration of airway smooth muscle (ASM) cells plays an important role in the pathophysiology of airway hyperresponsiveness and remodeling in asthma. It has been reported that prostaglandin (PG)E2 inhibits migration of ASM cells. Although PGE2 regulates cellular functions via binding to distinct prostanoid EP receptors, the role of EP receptor subtypes in mechanisms underlying cell migration has not been fully elucidated. We investigated the role of EP receptors in the inhibitory effects of PGE2 on the migration of human ASM cells. Migration induced by platelet-derived growth factor (PDGF)-BB (10 ng/ml, 6 h) was assessed by a chemotaxis chamber assay. PDGF-BB-induced cell migration was inhibited by PGE2, the specific EP2 agonist ONO-AE1-259-01, the specific EP4 agonist ONO-AE1-329, and cAMP-mobilizing agents. The inhibition of cell migration by PGE2 was significantly reversed by a blockade of EP2 and EP4 receptors using antagonists or transfection with siRNAs. Moreover, PGE2, the EP2 agonist, and the EP4 agonist significantly increased phosphorylation of small heat shock protein 20, one of the protein substrates for protein kinase A (PKA), with depolymerization of actin. In contrast, the EP3 agonist ONO-AE-248 significantly promoted baseline cell migration without affecting PDGF-BB-induced cell migration. In summary, activation of EP2 and EP4 receptors and subsequent activation of the cAMP/PKA pathway are the main mechanisms of inhibition of ASM cell migration by PGE2. HSP20 phosphorylation by PKA is possibly involved in this mechanism. Conversely, EP3 is potent in promoting cell migration. EP receptor subtypes may be novel therapeutic target molecules in airway remodeling and asthma.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Respiratory Cell and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.