Abstract

Path integration, the ability to sense self-motion for keeping track of changes in orientation and position, constitutes a fundamental mechanism of spatial navigation and a keystone for the development of cognitive maps. Whereas animal path integration is predominantly supported by the head-direction, grid, and place cell systems, the neural foundations are not well understood in humans. Here we used functional magnetic resonance imaging and a virtual rendition of a triangle completion paradigm to test whether human path integration recruits a cortical system similar to that of rodents and nonhuman primates. Participants traveled along two legs of a triangle before pointing toward the starting location. In accordance with animal models, stronger right hippocampal activation predicted more accurate updating of the starting location on a trial-by-trial basis. Moreover, between-subjects fluctuations in response consistency were negatively correlated with bilateral hippocampal and medial prefrontal activation, and bilateral recruitment of the human motion complex (hMT+) covaried with individual path integration capability. Given that these effects were absent in a perceptual control task, the present study provides the first evidence that visual path integration is related to the dynamic interplay of self-motion processing in hMT+, higher-level spatial processes in the hippocampus, and spatial working memory in medial prefrontal cortex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call