Abstract

Path integration is the continual updating of position and orientation during navigation. Animal studies have identified place cells and grid cells as important for path integration, but underlying models of path integration in humans have rarely been studied. The results of our novel loop closure task are the first to suggest that a homing vector tracks Euclidean distance from the home location, supported by the hippocampus, retrosplenial cortex, and parahippocampal cortex. These findings suggest a potential homing vector mechanism supporting path integration, which recruits hippocampus and retrosplenial cortex to track movement relative to home. These results provide new avenues for computational and animal models by directing attention to homing vector models of path integration, which differ from current movement-tracking models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.