Abstract
An rGO-Ag@SiO2 nanocomposite-based electrochemical sensor was developed to detect etidronic acid (EA) using the differential pulse voltammetric (DPV) technique. Rapid self-assembly of the rGO-Ag@SiO2 nanocomposite was accomplished through probe sonication. The developed rGO-Ag@SiO2 nanocomposite was used as an electrochemical sensing platform by drop-casting on a gold (Au) printed circuit board (PCB). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) confirmed the enhanced electrochemical active surface area (ECASA) and low charge transfer resistance (Rct) of the rGO-Ag@SiO2/Au PCB. The accelerated electron transfer and the high number of active sites on the rGO-Ag@SiO2/Au PCB resulted in the electrochemical detection of EA through the DPV technique with a limit of detection (LOD) of 0.68 μM and a linear range of 2.0–200.0 μM. The constructed DPV sensor exhibited high selectivity toward EA, high reproducibility in terms of different Au PCBs, excellent repeatability, and long-term stability in storage at room temperature (25 °C). The real-time application of the rGO-Ag@SiO2/Au PCB for EA detection was investigated using EA-based pharmaceutical samples. Recovery percentages between 96.2% and 102.9% were obtained. The developed DPV sensor based on an rGO-Ag@SiO2/Au PCB could be used to detect other electrochemically active species following optimization under certain conditions.
Highlights
Bisphosphonate compounds are a category of drugs in the contemporary pharmacological arsenal that avert bone density damage
5 μL of the as-prepared reduced graphene oxide (rGO)-Ag@SiO2 nanocomposite was drop-casted on the cleaned Au printed circuit board (PCB) [25]
The surface morphologies of the bare Au PCB, rGO-modified Au PCB, Ag@SiO2-modified Au PCB, and rGO-Ag@SiO2–modified Au PCB were examined by scanning electron microscopy (SEM)
Summary
Bisphosphonate compounds are a category of drugs in the contemporary pharmacological arsenal that avert bone density damage. EA is mainly used to reduce osteoclastic bone resorption (Paget’s disease and osteoporosis), and only very low concentrations (200–400 mg) of etidronate are used to treat bone damage [2,3]. Nanomaterials based on graphene and its derivatives possess excellent conductivity, high thermal stability, and inexpensive functionalization through chemical processes. For these reasons, a wide variety of electrochemistry-based studies on graphene-based nanomaterials have been carried out [12,13,14]. Probe sonication-assisted construction was used to develop an rGO-Ag@SiO2 nanocomposite as an electrochemical sensing platform This is the first differential pulse voltammetric (DPV)-based electrochemical sensor for the electrochemical detection of EA
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.