Abstract
Predation can play an important role in the evolution and maintenance of prey colour polymorphisms. Several factors are known to affect predator choice, including the prey's relative abundance and conspicuousness. In polymorphic prey species, predators often target the most common or most visible morphs. To test if predator choice can explain why in Midas cichlid fish the more visible (gold) morph is also more rare than the inconspicuous dark morph, we conducted predation experiments using two differently coloured wax models in Nicaraguan crater lakes. Contrary to expectations, we observed an overall higher attack rate on the much more abundant, yet less conspicuous dark models, and propose frequency-dependent predation as a potential explanation for this result. Interestingly, the attack rate differed between different types of predators. While avian predators were biased towards the abundant and less colourful dark morphs, fish predators did not show a strong bias. However, the relative attack rate of fish predators seemed to vary with the clarity of the water, as attack rates on gold models went up as water clarity decreased. The relative differential predation rates on different morphs might impact the relative abundance of both colour morphs and thus explain the maintenance of the colour polymorphism. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112, 123–131.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.