Abstract

In the very long baseline interferometry (VLBI) radio sources mission of selenological and engineering explorer, the differential phase delay between the Rstar and Vstar sub-satellites is obtained by using the multifrequency VLBI method during the switching VLBI observation period. The cycle ambiguity is successfully determined and the differential phase delay is estimated within an error of 7 picoseconds. The RMS error is somewhat larger than that for the case of same-beam VLBI because fluctuations of propagation delays whose periods are shorter than the switching interval cannot be canceled out between Rstar and Vstar. However, the differential phase delay during the switching VLBI period is sufficiently accurate and, together with Doppler and range measurements, can be a useful means for precisely determining satellite orbits and precisely estimating the lunar gravity field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.