Abstract

Regulator of G-protein signaling (RGS) proteins are a family of molecules that control the duration of G protein signaling. A variety of RGS proteins have been reported to modulate opioid receptor signaling. Here we show that RGS4 is abundantly expressed in human neuroblastoma SH-SY5Y cells that endogenously express mu- and delta-opioid receptors and test the hypothesis that the activity of opioids in these cells is modulated by RGS4. Endogenous RGS4 protein was reduced by approximately 90% in SH-SY5Y cells stably expressing short hairpin RNA specifically targeted to RGS4. In these cells, the potency and maximal effect of delta-opioid receptor agonist (SNC80)-mediated inhibition of forskolin-stimulated cAMP accumulation was increased compared with control cells. This effect was reversed by transient transfection of a stable RGS4 mutant (HA-RGS4C2S). Furthermore, MAPK activation by SNC80 was increased in cells with knockdown of RGS4. In contrast, there was no change in the mu-opioid (morphine) response at adenylyl cyclase or MAPK. FLAG-tagged opioid receptors and HA-RGS4C2S were transiently expressed in HEK293T cells, and co-immunoprecipitation experiments showed that the delta-opioid receptor but not the mu-opioid receptor could be precipitated together with the stable RGS4. Using chimeras of the delta- and mu-opioid receptors, the C-tail and third intracellular domain of the delta-opioid receptor were suggested to be the sites of interaction with RGS4. The findings demonstrate a role for endogenous RGS4 protein in modulating delta-opioid receptor signaling in SH-SY5Y cells and provide evidence for a receptor-specific effect of RGS4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.