Abstract
Lipid droplets (LDs) are intracellular storage vesicles composed of a neutral lipid core surrounded by a glycerophospholipid membrane. LD accumulation is associated with different stages of cancer progression and stress responses resulting from chemotherapy. In previous work, a novel dual nano-electrospray ionization source and data-dependent acquisition method for measuring the relative abundances of lipid species between two extracts were described and validated. Here, this same source and method were used to determine if oxaliplatin-sensitive and resistant cells undergo similar lipid profile changes, with the goal of identifying potential signatures that could predict the effectiveness of an oxaliplatin-containing treatment. Oxaliplatin is commonly used in the treatment of colorectal cancer. When compared to a no-drug control, oxaliplatin dosing caused significant increases in triglyceride (TG) and cholesterol ester (CE) species. These increases were more pronounced in the oxaliplatin-sensitive cells than in oxaliplatin-resistant cells. The increased neutral lipid abundance correlated with LD formation, as confirmed by confocal micrographs of Nile Red-stained cells. Untargeted proteomic analyses also support LD formation after oxaliplatin treatment, with an increased abundance of LD-associated proteins in both the sensitive and resistant cells.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.