Abstract

Infection of permissive fibroblasts with human CMV (HCMV, AD169) is accompanied by a robust activation of innate immune defense. In this study, we show that inflammatory cytokine (IC) secretion and activation of the type I IFN pathway (alphabeta IFN) are initiated through distinct mechanisms. HCMV is recognized by TLR2 leading to the NF-kappaB activation and IC secretion. However, the IFN response to HCMV is not a TLR2-dependent process, as a dominant negative TLR2 does not affect the antiviral response to infection. Additionally, bafilomycin, an endosomal acidification inhibitor, has no effect on HCMV-induced IFN responses suggesting that IFN signaling is independent of endosomal resident TLRs. By contrast, disruption of lipid rafts by depletion of cellular cholesterol inhibits both HCMV entry as well as IFN responses. Cholesterol depletion had no effect on the induction of ICs by HCMV, illustrating a biological distinction at the cellular level with the initiation of innate immune pathways. Furthermore, HCMV entry inhibitors block IFN responses but not IC signaling. In particular, blocking the interaction of HCMV with beta(1) integrin diminished IFN signaling, suggesting that this virus-cell interaction or subsequent downstream steps in the entry pathway are critical for downstream signal transduction events. These data show that HCMV entry and IFN signaling are coordinated processes that require cholesterol-rich microdomains, whereas IC signaling is activated through outright sensing via TLR2. These findings further highlight the complexity and sophistication of innate immune responses at the earliest points in HCMV infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call