Abstract
Recently published studies in both murine models and a meta-analysis of non-human primate renal transplant studies showed that anti-CD154 reagents conferred a significant survival advantage over CD40 blockers in both animal models and across multiple organs. Here we sought to compare the induction of donor-reactive forkhead box P3+-induced regulatory T cells (Foxp3+ iTreg) in mice treated with anti-CD154 versus anti-CD40 monoclonal antibodies (mAbs). Results indicated that while treatment with anti-CD154 mAb resulted in a significant increase in the frequency of donor-reactive CD4+ Foxp3+ iTreg following transplantation, treatment with anti-CD40 or Cd40 deficiency failed to recapitulate this result. Because we recently identified CD11b as an alternate receptor for CD154 during alloimmunity, we interrogated the role of CD154:CD11b interactions in the generation of Foxp3+ iTreg and found that blockade of CD11b in Cd40−/− recipients resulted in increased donor-reactive Foxp3+ iTreg as compared with CD40 deficiency alone. Mechanistically, CD154:CD11b inhibition decreased interleukin (IL)-1β from CD11b+ and CD11c+ dendritic cells, and blockade of IL-1β synergized with CD40 deficiency to promote Foxp3+ iTreg induction and prolong allograft survival. Taken together, these data provide a mechanistic basis for the observed inferiority of anti-CD40 blockers as compared with anti-CD154 mAb and illuminate an IL-1β-dependent mechanism by which CD154:CD11b interactions prevent the generation of donor-reactive Foxp3+ iTreg during transplantation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have