Abstract

Peripheral denervation and pain are hallmarks of small fiber neuropathy (SFN). We investigated the contribution of skin cells on nociceptor degeneration and sensitization. We recruited 56 patients with SFN and 31 healthy controls and collected skin punch biopsies for immunohistochemical and immunocytochemical analysis of netrin-1 (NTN1) and proinflammatory and anti-inflammatory cytokine expression patterns. We further applied coculture systems with murine dorsal root ganglion (DRG) neurons for skin cell-nerve interaction studies and patch-clamp analysis. Human keratinocytes attract murine DRG neuron neurites, and the gene expression of the axon guidance cue NTN1 is higher in keratinocytes of patients with SFN than in controls. NTN1 slows and reduces murine sensory neurite outgrowth in vitro, but does not alter keratinocyte cytokine expression. In the naive state, keratinocytes of patients with SFN show a higher expression of transforming growth factor-β1 (P < 0.05), while fibroblasts display higher expression of the algesic cytokines interleukin (IL)-6 (P < 0.01) and IL-8 (P < 0.05). IL-6 incubation of murine DRG neurons leads to an increase in action potential firing rates compared with baseline (P < 0.01). Our data provide evidence for a differential effect of keratinocytes and fibroblasts on nociceptor degeneration and sensitization in SFN compared with healthy controls and further supports the concept of cutaneous nociception.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call