Abstract

Rust infection results in decreases in photosynthesis and stress volatile emissions, but how these changes vary among host species has not been studied. We demonstrated that the impact of the obligate biotrophic fungus, Puccinia coronata f. sp. avenae, on foliage physiological processes is stronger in the primary host, Avena sativa (cultivated oat), than in the alternate host, Rhamnus frangula (alder buckthorn). Photosynthesis decreased with increasing percentage of damaged leaf area (DA) in both species, but reductions were greater in A. sativa. In A. sativa, photosynthetic reductions resulted from reductions in stomatal conductance and photosynthetic capacity; in R. frangula, reductions were due to reduced capacity. Infection reduced photosynthetic biomass and key nutrients in A. sativa, but not in R. frangula. In A. sativa, stress-elicited emissions (methyl jasmonate, green leaf volatiles, long-chain saturated aldehydes, mono- and sesquiterpenes, benzenoids, and carotenoid breakdown products) increased with increasing DA from 0% to 40%, but decreased with further increases in DA. In R. frangula, volatile emissions were slightly elicited but, surprisingly, constitutive isoprene emissions were enhanced. Different hosts had characteristic volatile fingerprints, indicating differential activation of biochemical pathways. Fungal-elicited reductions in photosynthesis scale uniformly with stress severity. In the sensitive host, biphasic scaling of volatiles indicates that heavy spread of chlorosis/necrosis leads to an overall cessation of physiological functioning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call