Abstract

The causal relationship between obesity and cardiovascular disease is extensively acknowledged; however, the exact mechanisms linking obesity and heart failure remain unclear. Here, we investigated the influence of adipokines derived from primary adipocytes on glucose and fatty acid uptake and metabolism in isolated primary cardiomyocytes. Either co-culture of these cell types or incubation with adipocyte-conditioned medium significantly increased glucose uptake in cardiomyocytes. When streptozotocin-induced diabetic rats were used as a source of adipocytes, there was a lower ability to elicit glucose uptake in cardiomyocytes which corresponded with lower Akt and AMPK phosphorylation. The profile of glucose metabolism also differed with oxidation being favored upon co-culture with wild-type adipocytes whereas lactate production was strongly induced by adipocytes from diabetic rats. Examination of fatty acid uptake revealed that stimulation only occurred in response to adipokines secreted by wild-type rat adipocytes. Importantly, oxidation of fatty acids by cardiomyocytes was decreased by adipokines derived from diabetic rat adipocytes. Analysis of adipokine profiles in diabetic rat adipocyte-conditioned medium demonstrated the most significant decreases in adiponectin and leptin with increased IL6 expression. Taken together, these data suggest that the profile of adipokines secreted by adipocytes from diabetic rats have a deleterious influence on cardiomyocyte metabolism which may be of relevance in the pathophysiology of heart failure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call