Abstract
The adipocytokine resistin impairs glucose tolerance and insulin sensitivity in rodents. Here, we examined the effect of resistin on glucose uptake in isolated adult mouse cardiomyocytes. Murine resistin reduced insulin-stimulated glucose uptake, establishing the heart as a resistin target tissue. Notably, human resistin also impaired insulin action in mouse cardiomyocytes, providing the first evidence that human and mouse resistin homologs have similar functions. Resistin is a cysteine-rich molecule that circulates as a multimer of a dimeric form dependent upon a single intermolecular disulfide bond, which, in the mouse, involves Cys26; mutation of this residue to alanine (C26A) produces a monomeric molecule that appears to be bioactive in the liver. Remarkably, unlike native resistin, monomeric C26A resistin had no effect on basal or insulin-stimulated glucose uptake in mouse cardiomyocytes. Resistin impairs glucose uptake in cardiomyocytes by mechanisms that involve altered vesicle trafficking. Thus, in cardiomyocytes, both mouse and human resistins directly impair glucose transport; and in contrast to effects on the liver, these actions of resistin require oligomerization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.