Abstract

Increasing drought periods as a result of global climate change pose a threat to many tree species by possibly outpacing their adaptive capabilities. Revealing the genetic basis of drought stress response is therefore implemental for future conservation strategies and risk assessment. Access to informative genomic regions is however challenging, especially for conifers, partially due to their large genomes, which puts constraints on the feasibility of whole genome scans. Candidate genes offer a valuable tool to reduce the complexity of the analysis and the amount of sequencing work and costs. For this study we combined an improved drought stress phenotyping of needles via a novel terahertz water monitoring technique with Massive Analysis of cDNA Ends to identify candidate genes for drought stress response in European silver fir (Abies alba Mill.). A pooled cDNA library was constructed from the cotyledons of six drought stressed and six well-watered silver fir seedlings, respectively. Differential expression analyses of these libraries revealed 296 candidate genes for drought stress response in silver fir (247 up- and 49 down-regulated) of which a subset was validated by RT-qPCR of the twelve individual cotyledons. A majority of these genes code for currently uncharacterized proteins and hint on new genomic resources to be explored in conifers. Furthermore, we could show that some traditional reference genes from model plant species (GAPDH and eIF4A2) are not suitable for differential analysis and we propose a new reference gene, TPC1, for drought stress expression profiling in needles of conifer seedlings.

Highlights

  • Smaller amounts of precipitation and an increase in the occurrence of drought events are being predicted for the Mediterranean region and parts of Central Europe, especially during summer periods [1]

  • Silver fir seedlings were propagated from seeds of female cones of a single tree in a forest stand near Hagenbach, a Black Forest region of South-Western Germany

  • Annotation of the tags resulted in a total of 65,535 transcripts, which were assigned to the three main gene ontology (GO) domains: molecular function (GO:0003674) contained 38,745 transcripts, cellular component (GO:0005575) 39,776 and biological process (GO:0008150) 37,140

Read more

Summary

Introduction

Smaller amounts of precipitation and an increase in the occurrence of drought events are being predicted for the Mediterranean region and parts of Central Europe, especially during summer periods [1]. Drought stress poses a major threat to trees by possibly causing hydraulic failure. Trees react with stomatal closure and reduced photosynthesis. Candidate Genes for Drought Stress Response in Abies alba

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.