Abstract

In this paper, we study the well-known problem of Isaacs called the "Life line" game when movements of players occur by acceleration vectors, that is, by inertia in Euclidean space. To solve this problem, we investigate the dynamics of the attainability domain of an evader through finding solvability conditions of the pursuit-evasion problems in favor of a pursuer or an evader. Here a pursuit problem is solved by a parallel pursuit strategy. To solve an evasion problem, we propose a strategy for the evader and show that the evasion is possible from given initial positions of players. Note that this work develops and continues studies of Isaacs, Petrosjan, Pshenichnii, Azamov, and others performed for the case of players' movements without inertia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.