Abstract
The resolution of the acceleration and jerk vectors of a particle moving on a space curve in the Euclidean 3-space is considered. By applying this resolution and Siacci’s theorem, alternative resolutions of acceleration and jerk vectors are derived based on the quasi-frame. In the osculating plane, the acceleration vector is resolved as the sum of its tangential and radial components. In addition, in the osculating and rectifying planes, the jerk vector is resolved along the tangential direction and two special radial directions. The maximum permissible speed on a space curve at all trajectory points is established via the jerk vector formula. Finally, some examples are presented to illustrate how the results work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.