Abstract
Abstract In this work, we show that the differential kinematics of slider–pusher systems are differentially flat assuming quasi-static behavior and frictionless contact. Second, we demonstrate that the state trajectories are invariant to time-differential transformations of the path parametrizing coordinate. For one this property allows to impose arbitrary velocity profiles on the slider without impacting the geometry of the state trajectory. This property implies that certain path planning problems may be decomposed approximately into a strictly geometric path planning and an auxiliary throughput speed optimization problem. Building on these insights, we elaborate a numerical approach tailored to constrained time optimal collision free path planning and apply it to the slider–pusher system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.