Abstract
PurposeThe purpose of this paper is to propose an efficient path and trajectory planning method to solve online robotic multipoint assembly.Design/methodology/approachA path planning algorithm called policy memorized adaptive dynamic programming (PM-ADP) combines with a trajectory planning algorithm called adaptive elite genetic algorithm (AEGA) for online time-optimal path and trajectory planning.FindingsExperimental results and comparative study show that the PM-ADP is more efficient and accurate than traditional algorithms in a smaller assembly task. Under the shortest assembly path, AEGA is used to plan the time-optimal trajectories of the robot and be more efficient than GA.Practical implicationsThe proposed method builds a new online and efficient path planning arithmetic to cope with the uncertain and dynamic nature of the multipoint assembly path in the Cartesian space. Moreover, the optimized trajectories of the joints can make the movement of the robot continuously and efficiently.Originality/valueThe proposed method is a combination of time-optimal path planning with trajectory planning. The traveling salesman problem model of assembly path is established to transfer the assembly process into a Markov decision process (MDP). A new dynamic programming (DP) algorithm, termed PM-ADP, which combines the memorized policy and adaptivity, is developed to optimize the shortest assembly path. GA is improved, termed AEGA, which is used for online time-optimal trajectory planning in joints space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.