Abstract
In this paper, we examine the expression profiles of two new putative pluripotent stem cell genes, the embryo/cancer sequence A gene (ECSA) and the cancer/testis gene Brother Of the Regulator of Imprinted Sites (BORIS), in human oocytes, preimplantation embryos, primordial germ cells (PGCs) and embryo stem (ES) cells. Their expression profiles are compared with that of the well-known pluripotency gene, OCT4, using a primer design that avoids amplification of the multiple OCT4 pseudogenes. As expected, OCT4 is high in human oocytes, down-regulated in early cleavage stages and then expressed de novo in human blastocysts and PGCs. BORIS and ECSA show distinct profiles of expression in that BORIS is predominantly expressed in the early stages of preimplantation development, in oocytes and 4-cell embryos, whereas ECSA is predominantly expressed in the later stages, blastocysts and PGCs. BORIS is not detected in blastocysts, PGCs or other fetal and adult somatic tissue tested. Thus, BORIS and ECSA may be involved in two different aspects of reprogramming in development, viz., in late gametogenesis, and at the time of formation of the ES cells (inner cell mass (ICM) and PGC), respectively. However, in human ES cells, where a deprogrammed stem cell state is stably established in culture, an immunofluoresence study shows that all three genes are co-expressed at the protein level. Thus, following their derivation from ICM cells, ES cells may undergo further transformation in culture to express a number of embryo and germ line stem cell functions, which, in normal development, show different temporal and spatial specificity of expression.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have