Abstract

The cyanobacterium Raphidiopsis raciborskii is a nuisance in freshwater ecosystems. Strains vary in their physiological responses to environmental drivers, thus a greater understanding of the magnitude of strain variation is required to characterize the species. In this study, two strains of R. raciborskii isolated from a tropical Australian water reservoir were grown with and without phosphorus (P) to determine any relative response to P stress. The strains had the same growth rates and under P free conditions, cells grew at the same rate as P replete conditions until day 9 when cell growth ceased. There was no difference in the alkaline phosphatase activity per cell for the P replete and P free conditions, but the level of activity per cell was greater in CS-505 than CS-506. P acquisition genes were identified from the sequenced genomes; both strains contained the same genes, but with differences in copy number of phoA (7 and 6), phnK (3 and 1) and phnH (2 and 1) between CS-505 and CS-506 (respectively). The expression of P acquisition genes under P stress was measured throughout the experiment and shown to vary in magnitude and timing across strains, and in P replete versus P free cultures. In strain CS-505, upregulation of the pstS1 and phoA genes occurred late in the growth phase and into senescence. These genes are involved in phosphate uptake and use of various forms of organic P. For strain CS-506, there was upregulation of the phosphate uptake gene, pit, and organic P utilization genes, phoA, phoU, phnD and phnK, commencing late in the growth phase. Our study shows that despite the fact that these two strains were isolated from the same waterbody, they differed markedly in their gene expression response to P free conditions. This capacity of R. raciborskii to vary in strain responses to P conditions gives the organism flexibility in responding to environmental change, particularly P stress conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.