Abstract

The effect of P nutrition on phosphate uptake and alkaline phosphatase activity was studied in chemostat culture for four rhizobial and three bradyrhizobial species. Phosphate-limited cells took up phosphate 10- to 180-fold faster than phosphate-rich cells. The four fast-growing rhizobial strains contained high levels of alkaline phosphatase activity under P-limited conditions compared to the repressed levels found in P-rich cells; alkaline phosphatase activity could not be detected in three slow-growing rhizobial strains, regardless of their P-status. Glycerol 1-phosphate-uptake in the cowpea Rhizobium NGR234 was derepressed over 50-fold under P-limited conditions, and appeared to be co-regulated with phosphate uptake. The phosphate-uptake system appeared similar in all strains with apparent K m values ranging from 1.6 μM to 6.0 μM phosphate and maximum activities from 17.2 to 126 nmol · min-1 · (mg dry weight of cells)-1. Carbonyl cyanide m-chlorophenyl hydrazone strongly inhibited phosphate uptake in all strains and a number of other metabolic inhibitors also decreased phosphate uptake in the cowpea Rhizobium NGR234. The phosphate uptake system in all strains failed to catalyse exchange of 32P label in preloaded cells or efflux of phosphate. The results suggest a single, repressible, unidirectional and energy-dependent system for the transport of phosphate into rhizobia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.