Abstract

Angiotensin II (Ang II) is locally generated in the placenta and regulates syncytial transport, vascular contractility and trophoblast invasion. It acts through two receptor subtypes, AGTR1 and AGTR2 (AT1 and AT2), which typically mediate antagonising actions. The objectives of this study are to characterise the cellular distribution of AGTR1 and AGTR2 at the maternal-fetal interface and explore the effects on cytotrophoblast turnover. Low levels of AGTR2 mRNA were detected in first trimester placental homogenates using real-time PCR. Immunohistochemistry using polyclonal antibodies against AGTR1 and AGTR2 detected the receptors in first trimester placenta, decidua basalis and villous tip outgrowths in culture. Serial staining with cytokeratin-7 was used to identify extravillous trophoblasts (EVTs). AGTR1 was found in the syncytiotrophoblast microvillous membrane, in a subpopulation of villous cytotrophoblasts, and in Hofbauer cells. AGTR1 was strongly upregulated in cytotrophoblasts in cell columns and villous tip outgrowths, but was absent in interstitial and endovascular EVTs within the decidua. AGTR2 immunostaining was present in Hofbauer cells and villous cytotrophoblasts, but was absent from syncytiotrophoblast. Faint staining was detected in cell column cytotrophoblasts and villous outgrowths, but not in EVTs within the decidua. Both receptors were detected in placental homogenates by western blotting. Ang II significantly increased proliferation of cytotrophoblasts in both villous explants and villous tip outgrowths, but did not affect apoptosis. Blockade of AGTR1 and AGTR2 together abrogated this effect. This study shows specific expression patterns for AGTR1 and AGTR2 in distinct trophoblast populations at the maternal-fetal interface and suggests that Ang II plays a role in placental development and generation of EVTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.