Abstract

Serine/arginine-rich (SR) proteins are associated with either the regulation or the execution of both constitutive splicing and the selection of alternative splice sites in animals and plants. We demonstrated the molecular characterization of a homolog of SR protein, atSR45a, in Arabidopsis plants. Six types of mRNA variants (atSR45a-1a-e and atSR45a-2) were generated by the alternative selection of transcriptional initiation sites and the alternative splicing of introns in atSR45a pre-mRNA. The atSR45a-1a and -2 proteins, presumed mature forms, were located in the nucleus and interacted with U1-70K, suggesting that these proteins function as a splicing factor in Arabidopsis. The levels of the transcripts atSR45a and atSR30, SF2/ASF-like SR proteins, were increased by various types of stress, such as high-light irradiation and salinity. Furthermore, the splicing patterns of atSR45a and atSR30 pre-mRNA themselves were altered under these stressful conditions. In particular, the expression of atSR45a-1a, atSR45a-2, atSR30 mRNA1 and atSR30 mRNA3 was greatly increased by high-light irradiation. These results indicate that the regulation of transcription and alternative splicing of atSR45a and atSR30 is responsive to various stressful conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call