Abstract

Insulin regulates alternative splicing of PKCbetaII mRNA by phosphorylation of SRp40 via a phosphatidylinositol 3-kinase pathway (Patel, N. A., Chalfant, C. E., Watson, J. E., Wyatt, J. R., Dean, N. M., Eichler, D. C., and Cooper, D. C. (2001) J. Biol. Chem. 276, 22648-22654). Transient transfection of constitutively active Akt2 kinase promotes PKCbetaII exon inclusion. Serine/arginine-rich (SR) RNA-binding proteins regulating the selection of alternatively spliced exons are potential substrates of Akt kinase because many of them contain RXRXX(S/T) motifs. Here we show that Akt2 kinase phosphorylated SRp40 in vivo and in vitro. Mutation of Ser86 on SRp40 blocked in vitro phosphorylation. In control Akt2(+/+) fibroblasts, insulin treatment increased the phosphorylation of endogenous SR proteins, but their phosphorylation state remained unaltered by insulin in fibroblasts from Akt2(-/-) mice. Levels of PKCbetaII protein were up-regulated by insulin in Akt2(+/+) cells; however, only very low levels of PKCbetaII were detected in Akt2(-/-) cells and did not change following insulin treatment. Endogenous PKCbetaI and -betaII mRNA levels in Akt2(+/+) and Akt2(-/-) gastrocnemius muscle tissues were compared using quantitative real time PCR. The results indicated a 54% decrease in the expression of PKCbetaII levels in Akt(-/-), whereas PKCbetaI levels remained unchanged in both samples. Further, transfection of Akt2(-/-) cells with a PKCbetaII splicing minigene revealed defective betaII exon inclusion. Co-transfection of the mutated SRp40 attenuated betaII exon inclusion. This study provides in vitro and in vivo evidence showing Akt2 kinase directly phosphorylated SRp40, thereby connecting the insulin, PI 3-kinase/Akt pathway with phosphorylation of a site on a nuclear splicing protein promoting exon inclusion. This model is upheld in Akt2-deficient mice with insulin resistance leading to diabetes mellitus.

Highlights

  • Insulin regulates alternative splicing of protein kinase C␤II (PKC␤II) mRNA by phosphorylation of SRp40 via a phosphatidylinositol 3-kinase pathway

  • It has been shown that the physiological responses of insulin such as glucose uptake and Glut4 translocation are preferentially mediated by Akt2 kinase [46]

  • The endogenous splicing of PKC␤II in cells with constitutively active (CA)-Akt2 was compared with insulin-treated cells and to cells transfected with SRp40 cDNA where inclusion of the ␤II exon was detected without insulin treatment as reported earlier [24]

Read more

Summary

Introduction

Insulin regulates alternative splicing of PKC␤II mRNA by phosphorylation of SRp40 via a phosphatidylinositol 3-kinase pathway Insulin regulates splicing of pre-mRNA for protein kinase C␤II (PKC␤II)1 by enhanced exon inclusion in rat skeletal muscle myotubes (L6) [1, 2].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call