Abstract

Saliva of Aedes aegypti contains a complex array of proteins essential for both blood feeding and pathogen transmission. A large numbers of those proteins are classified as unknown in regard to their function(s). Understanding the dynamic interactions at the mosquito-host interface can be achieved in part by characterizing mosquito salivary gland gene expression relative to blood feeding. Towards this end, we developed an oligonucleotide microarray representing 463 transcripts to determine differential regulation of salivary gland genes. This microarray was used to investigate the temporal gene expression pattern of Ae. aegypti salivary gland transcriptome at different times post-blood feeding. Expression of the majority of salivary gland genes (77–87%) did not change significantly as a result of blood feeding, while 8 to 20% of genes were down-regulated and 2.8 to 11.6% genes were up-regulated. Up-regulated genes included defensins, mucins and other immune related proteins. Odorant-binding protein was significantly down-regulated. Among unknown function proteins, several were up-regulated during the first three hours post-blood feeding and one was significantly down-regulated. Quantitative real-time RT-PCR was used to substantiate differential expression patterns of five randomly selected genes. Linear regression analysis revealed a high degree of correlation (R2 > 0.89) between oligonucleotide microarray and quantitative RT-PCR data. To our knowledge, this is the first study to investigate differential expression of the Ae. aegypti salivary gland transcriptome upon blood feeding. A microarray provides a robust, sensitive way to investigate differential regulation of mosquito salivary gland genes.

Highlights

  • Saliva of Aedes aegypti contains a complex array of proteins essential for both blood feeding and pathogen transmission

  • Hematophagous arthropod saliva contains pharmacologically active molecules that both facilitate blood feeding by modulating host hemostasis, inflammation, immunity, and wound healing [1,2] and potentiate pathogen transmission and establishment [2,3,4,5,6]

  • We developed an Ae. aegypti salivary gland microarray to investigate the temporal gene expression pattern of salivary gland transcriptome at different times post-blood feeding

Read more

Summary

Introduction

Saliva of Aedes aegypti contains a complex array of proteins essential for both blood feeding and pathogen transmission. Aegypti salivary gland transcriptome upon blood feeding. A large numbers of genes encode salivary gland proteins of unknown function. We describe differential expression of Ae. aegypti salivary gland genes upon blood feeding.

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.