Abstract

The author investigated the etching characteristics of semi-insulating (SI) and n-doped (n-) 4H-SiC substrates at a high etch rate of about 2 μm/min using high-density SF6/O2 inductively coupled plasma. The etch rate of SI-SiC was found to be lower than that of n-SiC, and the etching profile of SI-SiC showed retrograde features with a larger sidewall angle and a rounder etched bottom compared to n-SiC. These characteristics are attributed to the difference in wafer heating and negative charging of the sidewall during plasma etching between both substrates. The temperature of n-SiC increases by radiative heating from the high-density plasma during etching because of the higher free-carrier absorption compared to SI-SiC. Furthermore, the negative charge buildup at the sidewall of SI-SiC becomes stronger because of the lower electrical conductivity compared to n-SiC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.