Abstract
The Bezold-Jarisch reflex is a powerful inhibitory reflex initiated by activation of cardiopulmonary vagal nerves during myocardial ischemia, hemorrhage, and orthostatic stress leading to bradycardia, vasodilation, hypotension, and vasovagal syncope. This clinically relevant reflex has been studied by measuring heart rate (HR) and mean arterial pressure (MAP) responses to injections of a variety of chemical compounds. We hypothesized that reflex responses to different compounds vary due to differential activation of vagal afferent subtypes and/or variable coactivation of excitatory afferents. HR and MAP responses to intravenous injections of the transient receptor potential vanilloid-1 (TRPV1) agonist capsaicin and the serotonin 5-HT3 receptor agonist phenylbiguanide (PBG) were measured in anesthetized C57BL/6 mice before and after bilateral cervical vagotomy. Capsaicin and PBG evoked rapid dose-dependent decreases in HR and MAP followed by increases in HR and MAP above baseline. Bezold-Jarisch reflex responses were abolished after vagotomy, whereas the delayed tachycardic and pressor responses to capsaicin and PBG were differentially enhanced. The relative magnitude of bradycardic versus depressor responses (↓HR/↓MAP) in vagus-intact mice was greater with capsaicin. In contrast, after vagotomy, the magnitude of excitatory tachycardic versus pressor responses (↑HR/↑MAP) was greater with PBG. Although capsaicin-induced increases in MAP and HR postvagotomy were strongly attenuated or abolished after administration of the ganglionic blocker hexamethonium, PBG-induced increases in MAP and HR were mildly attenuated and unchanged, respectively. We conclude that responses to capsaicin and PBG differ in mice, with implications for delineating the role of endogenous agonists of TRPV1 and 5-HT3 receptors in evoking cardiopulmonary reflexes in pathophysiological states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.