Abstract
BackgroundCrosstalk between malignant hepatocytes and the surrounding peritumoral stroma is a key modulator of hepatocarcinogenesis and therapeutic resistance. To examine the chemotherapy resistance of these two cellular compartments in vitro, we evaluated a well-established hepatic tumor cell line, HepG2, and an adult hepatic stellate cell line, LX2. The aim was to compare the chemosensitization potential of arsenic trioxide (ATO) in combination with sorafenib or fluorouracil (5-FU), in both hepatic tumor cells and stromal cells.MethodsCytotoxicity of ATO, 5-FU, and sorafenib, alone and in combination against HepG2 cells and LX2 cells was measured by an automated high throughput cell-based proliferation assay. Changes in survival and apoptotic signaling pathways were analyzed by flow cytometry and western blot. Gene expression of the 5-FU metabolic enzyme, thymidylate synthase, was analyzed by real time PCR.ResultsBoth HepG2 and LX2 cell lines were susceptible to single agent sorafenib and ATO at 24 hr (ATO IC50: 5.3 μM in LX2; 32.7 μM in HepG2; Sorafenib IC50: 11.8 μM in LX2; 9.9 μM in HepG2). In contrast, 5-FU cytotoxicity required higher concentrations and prolonged (48–72 hr) drug exposure. Concurrent ATO and 5-FU treatment of HepG2 cells was synergistic, leading to increased cytotoxicity due in part to modulation of thymidylate synthase levels by ATO. Concurrent ATO and sorafenib treatment showed a trend towards increased HepG2 cytotoxicity, possibly due to a significant decrease in MAPK activation in comparison to treatment with ATO alone.ConclusionsATO differentially sensitizes hepatic tumor cells and adult hepatic stellate cells to 5-FU and sorafenib. Given the importance of both of these cell types in hepatocarcinogenesis, these data have implications for the rational development of anti-cancer therapy combinations for the treatment of hepatocellular carcinoma (HCC).
Highlights
Crosstalk between malignant hepatocytes and the surrounding peritumoral stroma is a key modulator of hepatocarcinogenesis and therapeutic resistance
HepG2 and LX2 cells are sensitive to the cytotoxic effects of arsenic trioxide In order to evaluate the effect of single agent ATO on cellular proliferation, HepG2 and LX2 cells were treated with increasing concentrations of drug for 24 to 96 hr
Dose response curves demonstrate the sensitivity of both cell lines in a time-dependent fashion, with LX2 cells being more sensitive to ATO treatment with a relative IC50 of 5.3 μM at 24 hrs of treatment compared to a relative IC50 of 32.7 μM for the HepG2 cells at the same incubation time (Figures 1A and 1B)
Summary
Crosstalk between malignant hepatocytes and the surrounding peritumoral stroma is a key modulator of hepatocarcinogenesis and therapeutic resistance. In vitro hepatic stellate cells within the tumor microenvironment promote hepatocarcinoma cell growth, epithelial to mesenchymal transition (EMT), Arsenic trioxide (ATO), used for the treatment of relapsed acute promyelocytic leukemia, activates the caspase cascade and induces production of reactive oxygen species, resulting in apoptosis [6]. Multiple groups initially demonstrated that treatment of HCC cell lines with ATO inhibited cell growth and induced apoptosis in a concentration-dependent manner [7,8,9]. Both in a rat model of diethaylnitrosamine-induced HCC and in murine HCC xenografts, ATO treatment significantly increased rates of apoptosis in tumor nodules in comparison to vehicle control [10,11]. The preclinical model systems assessed cytotoxicity of ATO on the tumor compartment, but not on the supporting stromal compartment
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.