Abstract

AimLiver fibrosis may develop into end-stage liver disease if left unprevented. The study is attempting to identify a compound to ameliorate liver fibrosis progression with high efficiency and low toxicity, as well as to analyze its potential molecular mechanism. MethodsThe drug screening was performed using human hepatic stellate cell line LX-2 for identifying the compound as collagen I inhibitor. Primary Human hepatic stellate cells and LX-2 cell line were used to detect the antifibrotic function activity and molecular mechanism analysis in vitro. The CCl4-induced mouse experimental model was used to measure the amelioration in liver fibrosis. ResultsThis study identified Aucubin, a natural compound, as a candidate for anti-liver fibrosis. Besides, Aucubin could inhibit the collagen I and α-SMA expressions in LX-2 cells and primary human hepatic stellate cells, as well as the cell proliferation. In terms of mechanism, Aucubin could upregulate Smad7 in hepatic stellate cells in a dose-dependent manner and block TGF-β signaling. We also found that Nrf2 might be a direct target for the action of Aucubin, whose activation was necessary for Smad7 upregulation. In an in-vivo mouse model, Aucubin efficiency ameliorated the progression of CCl4-induced liver fibrosis, and reduced the hepatic levels of collagen deposition, transaminase and inflammatory cytokines. ConclusionCapable of inhibiting the activation of hepatic stellate cells in vitro and in vivo, Aucubin may be a potential therapeutic candidate for liver fibrosis, which is dependent on the suppression of TGF-β signaling through stimulating Nrf2/Smad7 axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call