Abstract

Markers of brain aging and cognitive decline are thought to be influenced by peripheral inflammation. This study compared the effects of repeated lipopolysaccharide (LPS) treatment in young rats to age-related changes in hippocampal-dependent cognition and transcription. Young Fischer 344 X Brown Norway hybrid rats were given intraperitoneal injections once a week for 7weeks with either LPS or vehicle. Older rats received a similar injection schedule of vehicle. Old vehicle and young LPS rats exhibited a delay-dependent impairment in spatial memory. Further, LPS treatment reduced the hippocampal CA3-CA1 synaptic response. RNA sequencing, performed on CA1, indicated an increase in genes linked to neuroinflammation in old vehicle and young LPS animals. In contrast to an age-related decrease in transcription of synaptic genes, young LPS animals exhibited increased expression of genes that support the growth and maintenance of synapses. We suggest that the increased expression of genes for growth and maintenance of synapses in young animals represents neuronal resilience/recovery in response to acute systemic inflammation. Thus, the results indicate that repeated LPS treatment does not completely recapitulate the aging phenotype for synaptic function, possibly due to the chronic nature of systemic inflammation in aging and resilience of young animals to acute treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call