Abstract

Deviance detection is a key functional property of the auditory system that allows pre-attentive discrimination of incoming stimuli not conforming to a rule extracted from the ongoing constant stimulation, thereby proving that regularities in the auditory scene have been encoded in the auditory system. Using simple-feature stimulus deviations, regularity encoding and deviance detection have been reported in brain responses at multiple latencies of the human Auditory Evoked Potential (AEP), such as the Mismatch Negativity (MMN; peaking at 100–250ms from stimulus onset) and Middle-Latency Responses (MLR; peaking at 12–50ms). More complex levels of regularity violations, however, are only indexed by AEPs generated at higher stages of the auditory system, suggesting a hierarchical organization in the encoding of auditory regularities. The aim of the current study is to further characterize the auditory hierarchy of novelty responses, by assessing the sensitivity of MLR components to deviant probability manipulations. MMNs and MLRs were recorded in 24 healthy participants, using an oddball location paradigm with three different deviant probabilities (5%, 10% and 20%), and a reversed-standard (91.5%). We analyzed differences in the MLRs elicited to each of the deviant stimuli and the reversed-standard, as well as within deviant stimuli. Our results confirmed deviance detection at the level of both MLRs and MMN, but significant differences for deviant probabilities were found only for the MMN. These results suggest a functional dissociation between regularity encoding, already present at early stages of auditory processing, and the encoding of the probability with which this regularity is disrupted, which is only processed at higher stages of the auditory hierarchy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call