Abstract

A semiempirical model of single differential cross sections (SDCS) for ionization of water vapor by fast electrons and bare ions is presented. At low secondary-electron energy, the model is based on an asymptotic expansion of the first Born approximation with coefficients, that are independent of projectile properties, evaluated from experimental photoabsorption and proton-impact ionization data. As the secondary-electron energy increases, the model converges to a binary-encounter approximation. Comparisons with measured differential, total, and dissociative cross sections for ionization of water by fast electrons are used to test the model. For primary electrons with energy greater than about 500 eV, agreement with these data is generally within experimental uncertainty; however, some discrepancies of uncertain origin exist.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.