Abstract

Dorsal horn neurons of the spinal cord participate in neuronal pain transmission. During spinal and epidural anesthesia, dorsal horn neurons are exposed to local anesthetics and opioids. Droperidol is usually given with opioids to avoid nausea and vomiting. A recently developed method of "entire soma isolation" has made it possible to study directly the action of droperidol on different components of Na+ current in dorsal horn neurons. Using a combination of the whole-cell patch-clamp recording from spinal cord slices and the entire soma isolation method, we studied the direct action of droperidol on two types of Na+ currents in dorsal horn neurons of young rats. The tetrodotoxin-sensitive Na+ current in isolated somata consisted of a fast inactivating (tauF, 0.5-2 ms; 80-90% of the total amplitude) and a slow inactivating (tauS, 6-20 ms; 10-20% of the total amplitude) component. Droperidol, at concentrations relevant for spinal and epidural anesthesia, selectively and reversibly suppressed the fast component with a half-maximum inhibiting concentration (IC50) of 8.3 microm. The slow inactivating component was much less sensitive to droperidol; the estimated IC50 value was 809 microm. Droperidol selectively blocks fast Na+ channels, the fast and slow components of the Na+ current in dorsal horn neurons are carried through pharmacologically distinct types of Na+ channels, and the effects of droperidol differ from those of local anesthetics and tetrodotoxin, which equipotently suppress both components. Droperidol may be suggested as a pharmacologic tool for separation of different types of inactivating tetrodotoxin-sensitive Na+ channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.