Abstract
The capacity of platelets to form a thrombus is mediated by integrin α IIbβ 3. The cytoplasmic tail of α IIb contains a highly conserved motif, 989KVGFFKR 995, which plays a critical role in regulating integrin activation and acts as a recognition site for various intracellular proteins, e.g. CIB1, PP1, ICln and RN181. Previously, we demonstrated that a cell-permeable integrin-derived activating (IDA) peptide, KVGFFKR, induces platelet activation, whereas an integrin-derived inhibitory (IDI) peptide, KVGAAKR, is antithrombotic. To elucidate the molecular mechanism underlying these opposite effects we investigate the affinity of known integrin α IIb binding proteins for the two immobilized peptides in dependence on the activation state of platelets by means of peptide-affinity chromatography, blotting techniques and protein:peptide docking studies. Our results provide a model for the inhibition of ICln interaction with the integrin in activated platelets by the IDI-peptide. Thus, ICln:IDI-peptide interaction profiles can have a pivotal purpose in the search for consensus pharmacophores specifically inhibiting ICln function in platelets potentially leading to the development of integrin-derived antithrombotic drugs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have