Abstract

Methylation greatly influences the bacterial genome by guiding DNA repair and regulating pathogenic and stress-response phenotypes. But, the rate of epigenetic changes and their consequences on molecular phenotypes are underexplored. Through a detailed characterization of genome-wide adenine methylation in a commonly used laboratory strain of Escherichia coli, we reveal that mismatch repair deficient populations experience an increase in epimutations resulting in a genome-wide reduction of 6mA methylation in a manner consistent with genetic drift. Our findings highlight how methylation patterns evolve and the constraints on epigenetic evolution due to post-replicative DNA repair, contributing to a deeper understanding of bacterial genome evolution and how epimutations may introduce semi-permanent variation that can influence adaptation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call