Abstract

BackgroundInsertion sequence (IS) elements are important mediators of genome plasticity and are widespread among bacterial and archaeal genomes. The 1.88 Mbp genome of the obligate intracellular amoeba symbiont Amoebophilus asiaticus contains an unusually large number of transposase genes (n = 354; 23% of all genes).ResultsThe transposase genes in the A. asiaticus genome can be assigned to 16 different IS elements termed ISCaa1 to ISCaa16, which are represented by 2 to 24 full-length copies, respectively. Despite this high IS element load, the A. asiaticus genome displays a GC skew pattern typical for most bacterial genomes, indicating that no major rearrangements have occurred recently. Additionally, the high sequence divergence of some IS elements, the high number of truncated IS element copies (n = 143), as well as the absence of direct repeats in most IS elements suggest that the IS elements of A. asiaticus are transpositionally inactive. Although we could show transcription of 13 IS elements, we did not find experimental evidence for transpositional activity, corroborating our results from sequence analyses. However, we detected contiguous transcripts between IS elements and their downstream genes at nine loci in the A. asiaticus genome, indicating that some IS elements influence the transcription of downstream genes, some of which might be important for host cell interaction.ConclusionsTaken together, the IS elements in the A. asiaticus genome are currently in the process of degradation and largely represent reflections of the evolutionary past of A. asiaticus in which its genome was shaped by their activity.

Highlights

  • Insertion sequence (IS) elements are important mediators of genome plasticity and are widespread among bacterial and archaeal genomes

  • Diversity of IS elements in the A. asiaticus 5a2 genome IS elements make up 183 kbp (10%) of the A. asiaticus genome

  • We were able to assign the vast majority of these transposase genes (n = 329, 93%; including partial IS element copies) to 16 different IS elements (ISCaa1 to ISCaa16), which belong to eight different IS element families, with IS5 family IS elements being most abundant in the A. asiaticus genome (Table 2)

Read more

Summary

Introduction

Insertion sequence (IS) elements are important mediators of genome plasticity and are widespread among bacterial and archaeal genomes. The 1.88 Mbp genome of the obligate intracellular amoeba symbiont Amoebophilus asiaticus contains an unusually large number of transposase genes (n = 354; 23% of all genes). Mobile genetic elements such as phages, plasmids and transposable elements play a vital role in horizontal gene transfer and genome rearrangement in bacteria and archaea [1]. The majority of IS elements encode transposases containing the so-called DDE-motif consisting of the three amino acids aspartic acid, aspartic acid, and glutamic acid. These residues form the catalytic triad necessary for transposition. They are found in three regions (N2, N3, and C1) of the transposase amino acid sequence separated by spacers of various lengths [2,16]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call