Abstract

To investigate whether phosphatidylinositol 3-kinase (PI-3K) signaling is involved in lens epithelial cell proliferation and differentiation promoted by growth factors. Proliferation of rabbit lens epithelial cells grown in culture was measured with a DNA-binding fluorescent dye in a proliferation assay. Primary cultures of embryonic chicken lens epithelial cells that develop lentoids were used for differentiation-related studies, and delta-crystallin synthesis in these cultures was determined by metabolic labeling with [(35)S]methionine. Immunoprecipitation and immunoblot analyses were also used. The PI-3K inhibitors wortmannin and LY294002 blocked the insulin-, insulin-like growth factor (IGF)-1-, and fibroblast growth factor (FGF)-2-promoted cell proliferation in rabbit lens epithelial cells. Inhibition of PI-3K activity by these inhibitors unexpectedly increased the synthesis of early differentiation marker protein delta-crystallin in chicken lens epithelial cells. Insulin and IGF-1 stimulated activation of PI-3K in proliferating and differentiating cultures. FGF-2 showed no direct effect on PI-3K activation. Platelet-derived growth factor (PDGF) did not induce significant proliferation or increased expression of delta-crystallin, but stimulated PI-3K. The presence of FGF-2 in proliferating rabbit lens epithelial cells enhanced the IGF-1-, but not the PDGF-mediated PI-3K activation, suggesting a possible integration of FGF-2 signals with IGF-1. Whereas there was a gradual decrease in insulin/IGF-1-mediated activation of PI-3K and its downstream target Akt, with progression of differentiation in chicken lens epithelial cells, Erk2 phosphorylation induced by these growth factors was not decreased; rather, it remained increased in early stages of differentiation. The results reveal significant differences in the modulation of PI-3K signaling by different growth factors during proliferation in rabbit lens epithelial cells and differentiation in chicken lens epithelial cells and demonstrate that regulation of the PI-3K pathway plays a key role in these processes. A balance between the nonactivation of PI-3K and the activation of Erk2 may be necessary during early stages of epithelial cell transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call