Abstract

The present study examined the differential cocaine-induced activation of the cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) throughout discrete zones of analysis of the nucleus accumbens (NAc) in rats. CREB-dependent gene transcription, which may underlie long-lasting drug-induced changes in behavior and the subjective effects of cocaine, varies depending on the stage of drug exposure or withdrawal and the cell population involved. Using immunohistochemistry, the authors analyzed changes in CREB phosphorylation in the NAc after 5 days of cocaine, a short or long drug-free period, and a subsequent challenge injection. The NAc shell was separated into 5 zones of analysis previously defined by neurochemistry and connectivity. Repeated cocaine resulted in CREB phosphorylation in all analyzed subregions of the NAc excluding the most ventrolateral region of the shell 2 weeks after cessation of repeated cocaine, but rats challenged after 2 drug-free days yielded a more localized activation of CREB in the 3 most dorsomedial zones of the shell. The temporal and anatomical determinants of cocaine-induced CREB activity may indicate functional differences among NAc shell subregions and suggest the involvement of CREB in early and late cocaine effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call