Abstract

Adolescents, both human and nonhuman, exhibit impairments in the extinction of learned fear, an effect that is exacerbated, at least in rodents, by exposure to chronic stress. However, we have little understanding of the mechanisms underlying this effect. Therefore, here, we examined whether corticosterone exposure, a model of chronic stress, alters the expression of inhibitory neurons expressing parvalbumin (PV) in the basolateral amygdala and prefrontal cortex, two brain regions that have been implicated in fear extinction memories, in adolescent rats. We also examined the expression of perineuronal nets (PNNs), extracellular matrix structures that encompass inhibitory interneurons, in these two regions. These structures might render fear memories resistant to extinction by applying a structural "brake" on the plasticity of fear memories. Corticosterone-exposed adolescent rats exhibited poor extinction retention, as in past work, and were also found to have reduced percentage of PV-positive cells surrounded by PNNs in the basolateral amygdala. PV cells and PNNs were unaffected by corticosterone exposure in the prefrontal cortex. Our results suggest that the altered function of amygdala interneurons may be associated with the impaired extinction performance in stress-exposed adolescent rats. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.