Abstract
We propose differentiable artificial reverberation (DAR), a family of artificial reverberation (AR) models implemented in a deep learning framework. Combined with the modern deep neural networks (DNNs), the differentiable structure of DAR allows training loss gradients to be back-propagated in an end-to-end manner. Most of the AR models bottleneck training speed when implemented as is in the time domain and executed with a parallel processor like GPU due to their infinite impulse response (IIR) filter components. We tackle this by further developing a recently proposed acceleration technique, which borrows the frequency-sampling method (FSM). With the proposed DAR models, we aim to solve an artificial reverberation parameter (ARP) estimation task in a unified approach. We design an ARP estimation network applicable to both analysis-synthesis (RIR-to-ARP) and blind estimation (reverberant-speech-to-ARP) tasks. And using different DAR models only requires slightly a different decoder configuration. This way, the proposed DAR framework overcomes the previous methods' limitations of task-dependency and AR-model-dependency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Audio, Speech, and Language Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.