Abstract

BackgroundNumerous health benefits associated with increased omega-3 polyunsaturated fatty acid (n-3 PUFA) consumption has lead to an increasing variety of available n-3 PUFA sources. However, sources differ in the type, amount, and structural form of the n-3 PUFAs. Therefore, the objective of this study was to determine the effect of different sources of ω-3 PUFAs on digestibility, tissue deposition, eicosanoid metabolism, and oxidative stability.MethodsFemale Sprague-Dawley rats (age 28 d) were randomly assigned (n = 10/group) to be fed a high fat 12% (wt) diet consisting of either corn oil (CO) or n-3 PUFA rich flaxseed (FO), krill (KO), menhaden (MO), salmon (SO) or tuna (TO) oil for 8 weeks. Rats were individually housed in metabolic cages to determine fatty acid digestibility. Diet and tissue fatty acid composition was analyzed by gas chromatography and lipid classes using thin layer chromatography. Eicosanoid metabolism was determined by measuring urinary metabolites of 2-series prostaglandins (PGs) and thromoboxanes (TXBs) using enzyme immunoassays. Oxidative stability was assessed by measuring thiobarbituric acid reactive substances (TBARS) and total antioxidant capacity (TAC) using colorimetric assays. Gene expression of antioxidant defense enzymes was determined by real time quantitative polymerase chain reaction (RT-qPCR).ResultsRats fed KO had significantly lower DHA digestibility and brain DHA incorporation than SO and TO-fed rats. Of the n-3 PUFA sources, rats fed SO and TO had the highest n-3 PUFAs digestibility and in turn, tissue accretion. Higher tissue n-3 LC-PUFAs had no significant effect on 2-series PG and TXB metabolites. Despite higher tissue n-3 LC-PUFA deposition, there was no increase in oxidation susceptibility indicated by no significant increase in TBARS or decrease in TAC and gene expression of antioxidant defense enzymes, in SO or TO-fed rats.ConclusionsOn the basis that the optimal n-3 PUFA sources should provide high digestibility and efficient tissue incorporation with the least tissue lipid peroxidation, TO and SO appeared to be the most beneficial of the n-3 PUFAs sources evaluated in this study.

Highlights

  • Numerous health benefits associated with increased omega-3 polyunsaturated fatty acid (n-3 PUFA) consumption has lead to an increasing variety of available n-3 PUFA sources

  • There were no significant differences in brain, gonadal or retroperitoneal adipose tissue weights among the diet groups (Table 3)

  • There were no significant differences in brain docosahexaenoic acid (DHA) deposition in rats fed menhaden oil (MO) compared to krill oil (KO), flaxseed oil (FO) or corn oil (CO)-fed rats

Read more

Summary

Introduction

Numerous health benefits associated with increased omega-3 polyunsaturated fatty acid (n-3 PUFA) consumption has lead to an increasing variety of available n-3 PUFA sources. The omega-6 polyunsaturated fatty acid (n-6 PUFA), linoleic acid (LA, 18:2n-6) followed by the omega-3 polyunsaturated fatty acid (n-3 PUFA), alpha-linolenic acid (ALA, 18:3n-3) are the primary PUFAs in the Western diet [1]. LA and ALA are essential fatty acids that must be obtained from the diet. LA and ALA may be metabolized in the mammalian tissue into long-chain PUFAs (LC-PUFAs). The major n-6 long-chain polyunsaturated fatty acid (LC-PUFA) is arachidonic acid (ARA, 20:4n-6), and the bioactive n-3 LCPUFAs are eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 20:6n-3). In the Western diet, the n-6/n-3 ratio is ~16:1; for optimal health an n-6/n-3 ratio of 4:1 is recommended [2]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call