Abstract

Vacuolar matrix proteins in plant cells are sorted from the secretory pathway to the vacuoles at the Golgi apparatus. Previously, we reported that the NH2-terminal propeptide (NTPP) of the sporamin precursor and the COOH-terminal propeptide (CTPP) of the barley lectin precursor contain information for vacuolar sorting. To analyze whether these propeptides are interchangeable, we expressed constructs consisting of wild-type or mutated NTPP with the mature part of barley lectin and sporamin with CTPP and mutated NTPP in tobacco BY-2 cells. The vacuolar localization of these constructs indicated that the signals were interchangeable. We next analyzed the effect of wortmannin, a specific inhibitor of mammalian phosphatidylinositol (PI) 3-kinase on vacuolar delivery by NTPP and CTPP in tobacco cells. Pulse-chase analysis indicated that 33 microM wortmannin caused almost complete inhibition of CTPP-mediated transport to the vacuoles, while NTPP-mediated transport displayed almost no sensitivity to wortmannin at this concentration. This indicates that there are at least two different mechanisms for vacuolar sorting in tobacco cells, and the CTPP-mediated pathway is sensitive to wortmannin. We compared the dose dependencies of wortmannin on the inhibition of CTPP-mediated vacuolar delivery of proteins and on the inhibition of the synthesis of phospholipids in tobacco cells. Wortmannin inhibited PI 3- and PI 4-kinase activities and phospholipid synthesis. Missorting caused by wortmannin displays a dose dependency that is similar to the dose dependency for the inhibition of synthesis of PI 4-phosphate and major phospholipids. This is different, however, than the inhibition of synthesis of PI 3-phosphate. Thus, the synthesis of phospholipids could be involved in CTPP-mediated vacuolar transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.