Abstract
Thermogravimetric analysis and pyrolyzer-gas chromatography/mass spectrometry measurements were taken to examine the kinetic behavior and product distribution on the thermal and catalytic pyrolysis of different types of sewage sludge. Compared to livestock manure sewage sludge (LMSS), municipal sewage sludge (MSS) had larger ash (30.3%) and lower fixed carbon (7.9%) contents. The peak intensities for the 1st decomposition region (200–380 °C) on the derivative thermogravimetric curve of MSS were higher than those of LMSS. In contrast, the peak height in the 2nd temperature region (>380 °C) of MSS was lower than that of LMSS. The activation energy for the pyrolysis of MSS (Avg. 186.5 kJ/mol) was lower than that of LMSS (Avg. 263.4 kJ/mol) over the entire conversion range. MSS produced larger amounts of fatty acids and cholesterol than LMSS. The in-situ catalytic pyrolysis of MSS over HBeta using a pyrolyzer-gas chromatography/mass spectrometry also produced larger amounts of aromatic hydrocarbons than LMSS, suggesting that its better feedstock properties strongly influence the final product oil quality.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have