Abstract
Single electrode current and voltage clamp recordings in Calliphora, and whole-cell voltage clamp recordings in Drosophila were used to characterise the voltage-gated K channels in both major classes of photoreceptors, R7/8 (long visual fibres, LVFs) and R1-6 (short visual fibres, SVFs). R7/8 were identified by their unique spectral properties, ca. 3–4 fold higher input resistances and 3–4 fold lower cell capacitance. In Calliphora SVFs possess both fast and slow activating delayed rectifier potassium conductances. Drosophila SVFs possess a slowly inactivating delayed rectifier (IKs), a very rapidly inactivating A channel encoded by the Shaker gene (IA), and, in a minority of cells, a third K conductance with intermediate kinetics (IKf). In both specs the LVFs lack the slowest component, but exhibit the faster K conductance(s) with properties indistinguishable from those in the SVFs. These findings add to established evidence demonstrating the significant role played by potassium channels in tuning the photoreceptor membrane. The results also suggest that R1-6 photoreceptors and R7/8 form inputs to visual subsystems tuned to different temporal frequencies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have