Abstract

Hydroxylated polybrominated diphenyl ethers (HO-PBDEs) pose potential ecological risks due to their endocrine disrupting effects and extensive sources. It is of great importance to know their environmental transformation for the purpose of ecological risk assessment. Photodegradation is an important transformation pathway of HO-PBDEs. As HO-PBDEs ionize in natural waters, the photochemical reactivities of both neutral and anionic HO-PBDEs need to be unveiled. In this study, six HO-PBDEs were selected as model compounds. Their direct photolysis rate constants (kd), quantum yields (Φ), light absorptions (A), second-order reaction rate constants with 1O2 (k1O2) and OH (kOH) at different pH were determined, as well as these parameters for the neutral and anionic HO-PBDEs. The kd, Φ, A, k1O2 and kOH for the anions are much higher than those for the neutral molecules and vary with the bromination degree. Molecular parameters computed with the density functional theory (DFT) were employed to construct structure–reactivity equations. The ether bond strength, the frontier molecular orbital energy and the charge distribution were found to be the intrinsic structural characters governing the photochemical reactivities. The half-lives range from 0.7 to 60.1h for the photodegradation including the direct photolysis and the reactions with 1O2 and OH in surface waters at 45°N latitude under the continuous solar irradiation of sunny noon on 15 July. Direct photolysis is the dominant pathway. The photochemical reactivities of other HO-PBDEs at a given pH can also be estimated based on the structure–reactivity equations, which is important for the ecological risk assessment of HO-PBDEs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.