Abstract

Cholinergic transmission plays a pivotal role in learning, memory and cognition, and disturbances of cholinergic transmission have been implicated in neurological disorders including Alzheimer's disease, epilepsy and schizophrenia. Pharmacological alleviation of these diseases by drugs including N-desmethylclozapine (NDMC), promising in animal models, often fails in patients. We therefore compared the effects of NDMC on glutamatergic and GABAergic transmission in slices from rat and human neocortex. We used carbachol (CCh; an established agonist at metabotropic muscarinic acetylcholine (ACh) receptors (mAChRs)) as a reference. Standard electrophysiological methods including intracellular and field potential recordings were used. In the rat neocortex, NDMC prevented the CCh-induced decrease of GABAA and GABAB receptor-mediated responses but not the CCh-induced increase of the paired-pulse depression. NDMC reduced neither the amplitude of the excitatory postsynaptic potentials (EPSP) nor antagonized the CCh-induced depression of EPSP. In the human neocortex, however, NDMC failed to prevent CCh-induced decrease of the GABAB responses and directly reduced the amplitude of EPSP. These data suggest distinct effects of NDMC in rat and human at M2 and M4 mAChRs underlying presynaptic modulation of GABA and glutamate release, respectively. In particular, NDMC might be a M2 mAChR antagonist in the rat but has no activity at this receptor in human neocortex. However, NDMC has an agonistic effect at M4 mAChR in the human but no such effect in the rat neocortex. The present study confirms that pharmacology at mAChRs can differ between species and emphasizes the need of studies in human tissue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.