Abstract

The cell bodies of the layer II/III pyramidal cells in rat visual cortex receive three morphologically distinct types of axon terminals. These axon terminals all form symmetric synapses and have been termed large, medium-sized, and dense axon terminals. The present study shows that each of these different kinds of axon terminals contains gamma-aminobutyric acid (GABA) which suggests that they are inhibitory. From an analysis of the profiles of 50 cell bodies it is calculated that the average layer II/III pyramidal cell has 65 axosomatic synapses, of which 43 are formed by medium-sized terminals, 10 by large terminals, and 12 by dense terminals. Comparison of these different kinds of axon terminals with labelled axon terminals of known origin suggests that the medium-sized terminals are derived from smooth multipolar cells with unmyelinated axons, and that at least some of the dense terminals originate from bipolar cells that contain vasoactive intestinal polypeptides. The source of the large axon terminals is not known, but it is suggested that they originate from multipolar non-pyramidal cells with myelinated axons. Since the initial axon segments of these same neurons receive GABAergic axon terminals from chandelier cells, at least four different types of neurons provide inhibition to the cell bodies and axons of layer II/III pyramidal cells. This serves as an illustration of the complexity of the neuronal circuits in which pyramidal cells are involved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.